High-Users of Acute Care in a Teaching Hospital: A Retrospective Chart Review and Survey of Primary Care Physicians

Main Article Content

Arpita Gantayet
Pamela Mathura
Alexis Fong-Leboeuf
Natalie McMurtry
Julie Zhang
Finlay A McAlister
Narmin Kassam

Abstract

Purpose
To characterize high-users (HUs) of inpatient units, obtain insights from their primary care physicians (PCPs) and identify factors that can be modified to reduce resource use.


Method
The study design included retrospective chart reviews of high-user patients and qualitative surveys of their PCPs. HUs were defined as adults with 3 or more admissions to an index tertiary teaching hospital in Edmonton as well as a cumulative length of stay (cLOS) greater than 30 days at any hospital in the province of Alberta, between September 1, 2015 and September 30, 2016. The charts of HUs were reviewed to assess demographics, admitting and consulting services, medical profile, social profile, community supports, and scores on pre-existing risk-stratification tools to identify patient factors that might be characteristic of HUs. Additionally, a survey comprising 12 multiple-choice and 8 short-answer questions was faxed to their PCPs to assess HU attitudes and behaviors and collect recommendations to prevent high use of acute care.


Results
Of 125 HUs (median 62 years old, 5 admissions, cLOS 49 days, 14 emergency department (ED) visits, 10 medications), 74% lived at home, 86% had a PCP, 56% received homecare pre-admission and 34% had at least one critical care admission. HUs accounted for 2474 admissions or ED visits (median 14, IQR 10-22) at all sites in the year studied; 41% of their 1605 ED visits and 21% of their 869 admissions were at other hospitals. Their most prevalent comorbidities were hypertension, depression, and diabetes. 49 responses were received to 114 faxed surveys (43% response rate). Only 14 of 49 responding PCPs suggested interventions to address ED revisits and readmissions; PCPs most frequently cited living conditions and lack of social supports as key causative factors.
Conclusions
We have characterized high-user patients and discussed PCP perspectives and strategies to optimize their healthcare use.


Resume


Objet
Caractériser les grands utilisateurs (HU) des unités d’hospitalisation, obtenir des informations de leurs médecins de soins primaires (PCP) et identifier les facteurs qui peuvent être modifiés pour réduire l’utilisation des ressources.


Méthode
La conception de l’étude comprenait des examens rétrospectifs de dossiers de patients très utilisateurs et des enquêtes qualitatives sur leurs PPC. Les UH ont été définis comme des adultes ayant été admis à trois reprises ou plus dans un hôpital universitaire tertiaire d’Edmonton et dont la durée de séjour cumulée (DSC) est supérieure à 30 jours dans n’importe quel hôpital de la province de l’Alberta, entre le 1er septembre 2015 et le 30 septembre 2016. Les tableaux des HU ont été examinés afin d’évaluer les données démographiques, les services d’admission et de consultation, le profil médical, le profil social, les soutiens communautaires et les scores des outils de stratification des risques préexistants afin d’identifier les facteurs des patients qui pourraient être caractéristiques des HU. En outre, une enquête comprenant 12 questions à choix multiple et 8 questions à réponse courte a été envoyée par fax à leurs PCP afin d’évaluer les attitudes et les comportements des HU et de recueillir des recommandations pour prévenir un recours élevé aux soins de courte durée.


Résultats
Sur 125 HU (âge médian 62 ans, 5 admissions, cLOS 49 jours, 14 visites aux urgences, 10 médicaments), 74 % vivaient à domicile, 86 % avaient un PCP, 56 % recevaient des soins à domicile avant leur admission et 34 % avaient au moins une admission en soins intensifs. Les HU ont représenté 2474 admissions ou visites aux urgences (médiane 14, IQR 10-22) dans tous les sites au cours de l’année étudiée ; 41% de leurs 1605 visites aux urgences et 21% de leurs 869 admissions se sont faites dans d’autres hôpitaux. Leurs comorbidités les plus fréquentes étaient l’hypertension, la dépression et le diabète. 49 réponses ont été reçues pour 114 enquêtes envoyées par fax (taux de réponse de 43 %). Seuls 14 des 49 PCP ayant répondu ont suggéré des interventions pour remédier aux problèmes des visites aux urgences et des réadmissions; les PCP ont le plus souvent cité les conditions de vie et le manque de soutien social comme principaux facteurs de causalité.


Conclusions
Nous avons caractérisé les patients grands utilisateurs et discuté des perspectives et des stratégies de la PCP pour optimiser leur utilisation des soins de santé.

Abstract 75 | pdf Downloads 31 HTML Downloads 13

References

1. Guilcher SJT, Bronskill SE, Guan J, et al. Who are the high-users? A method for person-centred attribution of health care spending. PLoS ONE [Electronic Resource]. 2016;11(3).
2. Lown BA, McIntosh S, Gaines ME, et al. Integrating compassionate, collaborative care (the “triple C”) into health professional education to advance the triple aim of health care. Acad Med 2016;91(3):310–16.
3. Wodchis WP, Austin PC, Henry DA. A 3-year study of high-users of healthcare. CMAJ 2016;188(3):182–88.
4. Canadian Foundation for Healthcare Improvement. [Internet]. Available at: https://www.cfhi-fcass.ca. Revised February 5, 2019. Accessed February 7, 2019.
5. Van Walraven C, Bennett C, Jennings A, et al. Proportion of hospital readmissions deemed avoidable: A systematic review. CMAJ 2011;183(7):402.
6. Bardsley M, Lewis G. Reflections from the NHS in England. Healthc Papers 2014;14(2):26–30.
7. Billings J, Dixon J, Mijanovich T, et al. Case finding for patients at risk of readmission to hospital: Development of algorithm to identify high risk patients. BMJ 2006;333(7563):327–30.
8. Low LL, Liu N, Lee KH, et al. FAM-FACE-SG: A score for risk stratification of frequent hospital admitters. BMC Med Inform Decis Mak 2017;17:35.
9. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis 1987;40(5):373–83.
10. Staples JA, Thiruchelvam D, Redelmeier DA. Site of hospital readmission and mortality: A population-based retrospective cohort study. CMAJ Open 2014;2(2):77.
11. McAlister FA, Youngson E, Kaul P. Patients with heart failure readmitted to
the original hospital have better outcomes than those readmitted elsewhere. J Am Heart Assoc 2017;6(5).
12. Chechulin Y, Nazerian A, Rais S, et al. Predicting patients with high risk of becoming high-cost healthcare users in Ontario (Canada). Healthc Policy 2014;9(3):68–79.
13. Rosella LC, Fitzpatrick T, Wodchis WP, et al. High-cost health care users in Ontario, Canada: Demographics, socio-economic, and health status characteristics. BMC Health Serv Res 2014;14:532.
14. Condelius A, Hallberg IR, Jakobsson U. Hospital and outpatient clinic utilization among older people in the 3-5 years following the initiation of continuing care: A longitudinal cohort study. BMC Health Serv Res 2011;11:136.
15. Rais S, Nazerian A, Ardal S, et al. High-users of Ontario’s healthcare services. Healthc Policy 2013;9(1):44–51.
16. Nguyen OK, Tang N, Hillman JM, et al. What’s cost got to do with it? Association between hospital costs and frequency of admissions among “high-users” of hospital care. J Hosp Med (Online). 2013;8(12):665–71.
17. Gantayet A, Ang M, Cao X, et al. Persistent and non-persistent high-users of acute care resources: A deeper dive into the patient and system factors. Healthc Q 2017; 20(2):31–4.
18. Benbassat J, Taragin M. Hospital readmissions as a measure of quality of health care: Advantages and limitations. Arch Intern Med 2000;160(8):1074–81.
19. Feigenbaum P, Neuwirth E, Trowbridge L, et al. Factors contributing to all- cause 30-day readmissions: A structured case series across 18 hospitals. Med Care 2012;50(7):599–605.
20. Ortiz G, Fromer L. Patient-centered medical home in chronic obstructive pulmonary disease. J Multidiscip Healthc 2011;4:357–65.
21. Lewis G, Vaithianathan R, Wright L, et al. Integrating care for high-risk patients in England using the virtual ward model: Lessons in the process of care integration from three case sites. Int J Integr Care 2013;13:e046.
22. Lewis G, Bardsley M, Vaithianathan R, et al. Do ‘virtual wards’ reduce rates of unplanned hospital admissions, and at what cost? A research protocol using propensity matched controls. Int J Care Pathw [Electronic Resource] 2011;11:e079.
23. Leung DYP, Lee DT, Lee IFK, et al. The effect of a virtual ward program on emergency services utilization and quality of life in frail elderly patients after discharge: A pilot study. Clin Interv Aging 2015;10:413–420.
24. Lewis C, Moore Z, Doyle F, et al. A community virtual ward model to support older persons with complex health care and social care needs. Clin Interv Aging 2017;12:985–993.
25. Jones J, Carroll A. Hospital admission avoidance through the introduction of a virtual ward. Br J Community Nurs 2014;19(7):330–334.
26. Pacho C, Domingo M, Nunez R, et al. Early postdischarge STOP-HF-clinic reduces 30-day readmissions in old and frail patients with heart failure. Rev Esp Cardiol 2017;70(8):631–38.
27. Dhalla IA, O’Brien T, Morra D, et al. Effect of a postdischarge virtual ward on readmission or death for high-risk patients: A randomized clinical trial. JAMA 2014;312(13):1305–12.
28. Zolbanin HM, Delen, D. Processing electronic medical records to improve predictive analytics outcomes for hospital readmissions. Decis Support Syst 2018;112:98–110.