Detection of Postoperative Vital Signs Abnormalities on a Surgical Ward using Conventional and Remote Automated Monitoring

Main Article Content

Michael McGillion
Maura Marcucci
Flavia Borges
David Conen
Brenda Coleman
Krysten Gregus
Saman Parvaneh
Amal Bessisow
Ameen Patel
Prathiba Harsha
Carley Ouellette
Sandra Ofori
Daniel Sessler
P.J. Devereaux

Keywords

remote automated monitoring; vital signs

Abstract

Background: The true incidence of abnormal vital signs on post-surgical wards may be seriously underestimated based on nurse obtained conventional measurement. We sought to determine the incidence and severity of postoperative tachycardia, bradycardia and hypoxemia detected by continuous remote automated monitoring (RAM) versus the incidence of these vital sign abnormalities detected during routine nursing care.
Methods: We conducted a prospective cohort proof-of-concept study of 121 patients aged ≥45 years recov-ering from orthopedic surgery. Eligible patients were at risk of postoperative myocardial injury and had a planned hospital stay ≥48 hours. Philips’ IntelliVue MX40 wearable RAM technology was used to continu-ously monitor patients’ heart rate and pulse oximetry up to 72 hours following surgery. In addition, study personnel obtained vital signs collected during routine nursing care from participants’ medical charts. Clinically meaningful tachycardia, bradycardia and hypoxemia were defined as heart rates >100, <55, and blood oxyhemoglobin saturation (SpO2) of <90% for >15 contiguous minutes, respectively.
Results: Continuous RAM identified clinically meaningful episodes of tachycardia in 42 of 121 patients [34.7%] versus 7 patients [5.8%] identified by routine nursing care, for an absolute difference 28.9% (95% confidence interval [CI] 20.8, 37.0; p=0.001). RAM also detected bradycardia in 14 of 121 patients [11.6%] versus 6 patients [5.0%] detected by routine care, for an absolute difference 6.6% (95% CI 2.2, 11.0; p=0.07). RAM detected hypoxemia in 25 of 107 patients [23.3%] compared with 1 patient [0.9%] detected through routine monitoring, for an absolute difference of 22.4% (95% CI 14.5, 30.3; p=0.001).
Conclusion: Most clinically meaningful episodes of vital signs abnormalities detected by continuous RAM were missed by nurses through conventional periodic monitoring. Continuous RAM technologies have the potential to improve patient outcomes through early identification of physiological abnormalities on surgical wards.



Résumé
Contexte: La fréquence réelle des signes vitaux anormaux dans les unités de soins postopératoires peut être grandement sous-estimée sur la base des mesures classiques obtenues par le personnel infirmier. Nous avons cherché à déterminer la fréquence et la gravité de la tachycardie, de la bradycardie et de l’hypoxémie post-opératoires détectées par une surveillance automatisée à distance (SAD) en continu par rapport à la fréquence de ces anomalies des signes vitaux décelées pendant les soins infirmiers courants.
Méthodologie: Nous avons mené une étude prospective de validation de concept auprès de 121 patients âgés de 45 ans ou plus se remettant d’une intervention chirurgicale orthopédique. Les patients admissibles présen-tent un risque de lésion myocardique postopératoire et leur séjour prévu à l’hôpital est d’au moins 48 heures. Le moniteur portable IntelliVue MX40 de Philips issu de la technologie de SAD a été utilisé pour surveiller en continu la fréquence cardiaque et l’oxymétrie de pouls des patients pendant 72 heures après l’interven-tion chirurgicale. En outre, le personnel de l’étude a pu obtenir les mesures des signes vitaux recueillies lors des soins infirmiers courants à partir des dossiers médicaux des participants. La tachycardie, la bradycardie et l’hypoxémie d’importance clinique ont été définies comme étant respectivement une fréquence cardiaque supérieure à 100 pour la tachycardie et inférieure à 55 pour la bradycardie et une saturation pulsée en oxygène (SpO2) inférieure à 90 % pendant plus de 15 minutes consécutives.
Résultats: La SAD en continu a relevé des épisodes d’importance clinique de tachycardie chez 42 des 121 patients (34,7 %) comparativement à 7 patients (5,8 %) dans le cas des soins infirmiers courants, soit une différence absolue de 28,9 % (intervalle de confiance [IC] à 95 % de 20,8 à 37,0; P = 0,001). La SAD a égale-ment détecté une bradycardie chez 14 des 121 patients (11,6 %) comparativement à 6 patients (5,0 %) dans le cas des soins courants, soit une différence absolue de 6,6 % (IC à 95 % de 2,2 à 11,0; P = 0,07). La SAD a détecté une hypoxémie chez 25 patients sur 107 (23,3 %) comparativement à 1 patient (0,9 %) dans le cas des soins courants, la différence absolue étant de 22,4 % (IC à 95 % de 14,5 à 30,3; P = 0,001).
Conclusion: La plupart des épisodes d’importance clinique d’anomalies des signes vitaux détectés par la SAD en continu ont été manqués par les infirmières lors de la surveillance périodique classique. Les technologies de SAD en continu peuvent améliorer l’évolution de l’état de santé des patients grâce à une détection précoce des anomalies physiologiques dans les services de chirurgie.


 


Methods: We conducted a prospective cohort proof-of-concept study of 121 patients aged ≥45 years recovering from orthopedic surgery. Eligible patients were at risk of postoperative myocardial injury and had a planned hospital stay ≥48 hours. Philips’ IntelliVue MX40 wearable RAM technology was used to continuously monitor patients’ heart rate and pulse oximetry up to 72 hours following surgery. In addition, study personnel obtained vital signs collected during routine nursing care from participants’ medical charts. Clinically meaningful tachycardia, bradycardia and hypoxemia were defined as heart rates >100, <55, and blood oxyhemoglobin saturation (SpO2) of <90% for >15 contiguous minutes, respectively.


 


Results: Continuous RAM identified clinically meaningful episodes of tachycardia in 42 of 121 patients [34.7%] versus 7 patients [5.8%] identified by routine nursing care, for an absolute difference 28.9% (95% confidence interval [CI] 20.8, 37.0; p=0.001). RAM also detected bradycardia in 14 of 121 patients [11.6%] versus 6 patients [5.0%] detected by routine care, for an absolute difference 6.6% (95% CI 2.2, 11.0; p=0.07). RAM detected hypoxemia in 25 of 107 patients [23.3%] compared with 1 patient [0.9%] detected through routine monitoring, for an absolute difference of 22.4% (95% CI 14.5, 30.3; p=0.001).


 


Conclusion: Most clinically meaningful episodes of vital signs abnormalities detected by continuous RAM were missed by nurses through conventional periodic monitoring. Continuous RAM technologies have the potential to improve patient outcomes through early identification of physiological abnormalities on surgical wards.


 

Abstract 282 | PDF Downloads 95 XML Downloads 26 HTML Downloads 163

References

1. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume of surgery: A modelling strategy based on available data. Lancet. 2008;372(9633):139–44. http://dx.doi.org/10.1016/S0140-6736 (08)60878-8
2. Devereaux PJ, Sessler DI. Cardiac complications in patients undergoing major noncardiac surgery. New Engl J Med. 2015;373(23):2258–69. http://dx.doi.org/10.1056/NEJMra1502 824
3. VISION study investigators. Association between complica-tions and death within 30 days after noncardiac surgery. CMAJ. 2019;191(30):e830–7. http://dx.doi.org/10.1503/cmaj.190221
4. POISE Study Group, Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): A randomised controlled trial. Lancet. 2008;371(9627):1839–47. http://dx.doi.org/10.1016/S0140-6736(08)60601-7
5. Cegarra-Sanmartin V, Paniagua-Iglesias P, Popova E, de  Nadal  CM, Alonso-Coello P, Plou P, et al. [Perioperative acetylsalicylic acid and clonidine in noncardiac surgery patients (POISE-2 trial)]. Rev Esp Anestesiol Reanim. 2015;62(5):270–4.
6. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth  RN, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: Toward an empirical definition of hypotension. Anesthesiology. 2013;119(3):507–15. http://dx.doi.org/10.1097/ALN.0b013e3182a10e26
7. Bijker JB, Persoon S, Peelen LM, Moons KGM, Kalkman CJ, Kappelle LJ, et al. Intraoperative hypotension and perioperative ischemic stroke after general surgery: A nested case-control study. Anesthesiology. 2012;116(3):658–64. http:// dx.doi.org/10.1097/ALN.0b013e3182472320
8. Abbott TEF, Pearse RM, Archbold RA, Ahmad T, Niebrzegowska E, Wragg A, et al. A prospective international multicentre cohort study of intraoperative heart rate and systolic blood pressure and myocardial injury after noncardiac surgery: Results of the VISION study. Anesth Analg. 2018;126(6):1936– 45. http://dx.doi.org/10.1213/ANE.0000000000002560
9. Aronson S, Varon J. Hemodynamic control and clinical outcomes in the perioperative setting. J Cardiothorac Vasc Anesth. 2011;25(3):509–25. http://dx.doi.org/10.1053/j.jvca.2011.01.018
10. Bartels K, Kaizer A, Jameson L, Bullard K, Dingmann C, Fernandez-Bustamante A. Hypoxemia within the first 3 post-operative days is associated with increased 1-year postoperative mortality after adjusting for perioperative opioids and other confounders. Anesth Analg. 2020;131(2):555–63. http:// dx.doi.org/10.1213/ANE.0000000000004553
11. Roshanov PS, Rochwerg B, Patel A, Salehian O, Duceppe  E, Belley-Côté EP, et al. Withholding versus continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers before noncardiac surgery: An analysis of the vascular events in noncardiac surgery patients cohort evaluation prospective cohort. Anesthesiology. 2017;126(1):16–27. http://dx.doi.org/10.1097/ALN.0000000000001404
12. McGillion MH, Duceppe E, Allan K, Marcucci M, Yang S, Johnson AP, et al. Postoperative remote automated monitoring: Need for and state of the science. Can J Cardiol. 2018;34(7):850–62. http://dx.doi.org/10.1016/j.cjca.2018.04.021
13. McGain F, Cretikos MA, Jones D, Dyk SV, Buist MD, Opdam  H, et al. Documentation of clinical review and vital signs after major surgery. Med J Aust. 2008;189(7):380–3. http://dx.doi.org/10.5694/j.1326-5377.2008.tb02083.x
14. Sheth T, Natarajan MK, Hsieh V, Valettas N, Rokoss M, Mehta  S, et al. Incidence of thrombosis in perioperative and non-operative myocardial infarction. Br J Anaesth. 2018;120:725–33. http://dx.doi.org/10.1016/j.bja.2017.11.063
15. Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Rhythm Society. Circulation. 2019;140(8):e382–482. http://dx.doi.org/10.1161/CIR.0000000000000628
16. Correction to: 2018 ACC/AHA/HRS guideline on the evalu-ation and management of patients with bradycardia and cardiac conduction delay: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Rhythm Society. Circulation. 2019;140(8):e506–8. http//dx.doi.org/10.1161/CIR.000000000 0000721
17. Rosenberg J, Kehlet H. Postoperative mental confusion— Association with postoperative hypoxemia. Surgery. 1993;114 (1):76–81.
18. Aakerlund LP, Rosenberg J. Postoperative delirium: Treatment with supplementary oxygen. Br J Anaesth. 1994;72(3):286–90. http://dx.doi.org/10.1093/bja/72.3.286
19. Rosenberg-Adamsen S, Lie C, Bernhard A, Kehlet H, Rosenberg  J. Effect of oxygen treatment on heart rate after abdominal surgery. Anesthesiology. 1999;90(2):380–4. http://dx.doi.org/10.1097/00000542-199902000-00008
20. Rosenberg J, Rasmussen V, von Jessen F, Ullstad T, Kehlet H. Late postoperative episodic and constant hypoxaemia and associated ECG abnormalities. Br J Anaesth.1990;65(5):684–91. http://dx.doi.org/10.1093/bja/65.5.684
21. Goldman MD, Reeder MK, Muir AD, Loh L, Young JD, Gitlin DA, et al. Repetitive nocturnal arterial oxygen desaturation and silent myocardial ischemia in patients presenting for vascular surgery. J Am Geriatr Soc. 1993;41(7):703–9. http:// dx.doi.org/10.1111/j.1532-5415.1993.tb07457.x
22. Gill NP, Wright B, Reilly CS. Relationship between hypoxaemic and cardiac ischaemic events in the perioperative period. Br J Anaesth. 1992;68(5):471–3. http://dx.doi.org/10.1093/bja/68.5.471
23. Van Leuvan CH, Mitchell I. Missed opportunities? An observational study of vital sign measurements. Crit Care Resusc. 2008;10(2):111–5.
24. Sessler DI, Meyhoff CS, Zimmerman NM, Mao G, Leslie K, Vásquez SM, et al. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: A substudy of the POISE-2 Trial. Anesthesiology. 2018;128(2):317–27. http://dx.doi.org/10.1097/ALN.000000 0000001985
25. Olshansky B, Sullivan RM. Inappropriate sinus tachycardia. Europace. 2019;21(2):194–207. http://dx.doi.org/10.1093/europace/euy128
26. Sun Z, Sessler DI, Dalton JE, Devereaux PJ, Shahinyan A, Naylor AJ, et al. Postoperative hypoxemia is common and persistent: A prospective blinded observational study. Anesth Analg. 2015;121(3):709–15. http://dx.doi.org/10.1213/ANE.0000000000000836
27. Brown LT, Purcell GJ, Traugott FM. Hypoxaemia during post-operative recovery using continuous pulse oximetry. Anaesth Intensive Care. 1990;18(4):509–16. http://dx.doi.org/10.1177/0 310057X9001800417
28. Taenzer AH, Pyke JB, McGrath SP, Blike GT. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: A before-and-after concurrence study. Anesthesiology. 2010;112(2):282–7. http://dx.doi.org/10.1097/ ALN.0b013e3181ca7a9b
29. Ochroch EA, Russell MW, Hanson WC 3rd, Devine GA, Cucchiara AJ, Weiner MG, et al. The impact of continuous pulse oximetry monitoring on intensive care unit admissions from a postsurgical care floor. Anesth Analg. 2006;102(3):868– 75. http://dx.doi.org/10.1213/01.ane.0000195583.76486.c4
30. Giambrone GP, Wu X, Gaber-Baylis LK, Bhat AU, Zabih R, Altorki NK, et al. Incidence and implications of postoperative supraventricular tachycardia after pulmonary lobectomy. J Thorac Cardiovasc Surg. 2016;151(4):982–8. http://dx.doi. org/10.1016/j.jtcvs.2015.11.057
31. Aronow WS, Ahn C, Mercando AD, Epstein S, Kronzon I. Prevalence and association of ventricular tachycardia and complex ventricular arrhythmias with new coronary events in older men and women with and without cardiovascular disease. J Gerontol A Biol Sci Med Sci. 2002;57(3):M178–80. http://dx.doi.org/10.1093/gerona/57.3.m178
32. Sigmund AE, Fang Y, Chin M, Reynolds HR, Horwitz LI, Dweck E, et al. Postoperative tachycardia: Clinically meaningful or benign consequence of orthopedic surgery? Mayo Clin Proc. 2017;92(1):98–105. http://dx.doi.org/10.1016/j.mayocp.2016.08.005
33. Redfern OC, Griffiths P, Maruotti A, Recio Saucedo A, Smith  GB. The association between nurse staffing levels and the timeliness of vital signs monitoring: A retrospective observational study in the UK. BMJ Open. 2019;9(9):e032157. http://dx.doi.org/10.1136/bmjopen-2019-032157

Most read articles by the same author(s)